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1. Introduction

In setting up an analysis of variance we recognise three types of
effects, (a) treatment effects, (b) environmental or block effects and
(c) experimental error. The assumptions made in setting up the
analysis of variance for the above three effects are (1) the treatment
effects and environmental effects must be additive, (2) experimental
errors must be independent of the other two, (3) the experimental
errors must have a common variance (4) the experimental errors
should be normally distributed. If any one of these assumptions is
not satisfied suitable transformations are to be made to change the
scale of measurements in order to make the analysis of variance valid.
In mostcases when the experimental errors do not'have a homogene
ous common variance, tranformation is applied to make it homo-
scedastic.

I

If the form of change in variance with mean level is known, the
type of transformation to be used can be determined. Suppose we
write CT»^=/(m) where is the variance on the original scale of
measurements X with the mean of X equal to m ; then for any
function g{x) we have

'•'=(£)'
so that (Iff® is constant say, and we have

cdm

S/Am)

This is an approximate formula which determines the type of
transformation to be used for a particular type of data to make the
analysis of variance valid. For the ideal transformation (a) the
variance of the transformed variable should be unaffected by changes
in the mean level, (b) the transformed variable should be normally
distributed (c) the transformed scale should be onefor which an
arithmetic average is an eflScient estimate of the mean level for any
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particular group of measurements, {d) the transformed scale should
be one for which real effects are linear and additive. Under these
conditions Bartlett (1947) suggested

(1) the square root transformation when data follows the
Poison distribution ;

(2) logarithmic transformation of the simplest type when the
mean level varies with the standard deviation. In such
cases the variance is greater than the mean, This happens
because the mean level itself fluctuates so that

for biological populations.

For large A or w this variance law implies logarithmic transfor
mation, a more exact transformation being

sinh"^ [A\/^] or log{V1x fAV

This transformation holds for data following negative binomial
distribution as well. For small x it becomes equivalent to Vx
transformation, and for small number the transformation

sinh~^ [Vx + iJis better. For large a: it becomes equivalent
to the log transformation. This transformation requires an approxi
mate knowledge of X. Whenever Acannot be obtained (1 + can be
used as an approximate transformation. It shows an approximate
linear relationship with sinh~^[A\/:'c-f-i] for the likely values of A
which appear in practice. "Beall", however, suggested that in
entomological field experiments where an estimate of Ais required
two plots of each treatments must be included in each randomised
block. For such designs we can use the scale A~^ sinh~^[A,y/^]- The
transformation is valid for the more general variance law
crj.2 = [x^(w + AW). When the distribution is log normal the change
in the population variance is often proportional to the mean implying
changes independent of the mean on logarithmic scale. In such

cases transformations to the scale log ^^ is useful. Correla
tions are transformed to | log When the data follows the

Binomial law, the angular transformation g(x)=sin-V^ is used.
The probit transformation is used for log-normal distributions. The

transformation is given by :)'=5+| . It converts the pro
bability P in a normal distribution with mean 5 and variance 1 to
the corresponding abscissa y. It is particularly useful when such a
transformed quantity y is linearly dependent on another variable,
X so that the transformation converts the functional relation between
j and P to a straight line.
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2. The problem and some results in mixtures

One of the major problems attempted in the present paper isto
find a suitable method of analysis when the data from a design
follows different types of distributions in different ranges. The
splitting in the practical situations would be automatic, as replicates,
times etc. The distributions in such cases would be (a) Poisson (b)
negative binomial, (c) log-normal, {d) contageous. Examples ofsuch
distributions are (I) numbers of field plots with 0, 1,2, ...larvae
(2) number of plates with 0, 1, 2 ... bacterial colonies etc. In such
cases the distributions followed in each portion can,be empirically
checked by the chisquare test. For the same portion of the data
different types of distributions can be checked up. The one giving
the highest probability for x"- can be selected as adequate. Further,
the forms of the distribution in different portions may be the same ;
but they may vary in the parameters concerned. In such cases also
different transformations can be used in. different portions of the
design. Another way is to use different transformations which a
priori seem to be appropriate for the data and later on check the
transformed data for near normality or for rapid convergence to
normality. If the data are near normal these specifications are good
enough. If they are not normal we have to try other specifications.
Some times it may happen that the distributions of the whole or part
are the resultant of mixtures of distributions in the probability sense.
In such cases the mixtures can be due to addition or multiplication
of the component variables. In some other situations rnixtures can
be due to a weighted average of the cumulative distributionfunctions.
They may even be the (i-mixtures of the cumulative disribution
functions of Teicher. Some of. these .mixtures will asymptotically
converge to standard distributions as (1) the negative binomial (2)
the log-normal (3) the contageous types. The. transformations to. be
used in such and other cases to fender analysis of variance valid are
investigated in this paper. .

With this object in view we review some of the results from the
theory of mixtures of distributions. The simplest mixture occurs
when each observation is the sum or product of two component
variables Uiand F<. The distribution function f (x) of the sum of
two independent variables is given by

Fix) = F,ix)*F,ix).

This symbolic representation of the distribution functions corres
ponds to a genuine multiplication ofcharacteristic functions. If both
the components belong tothe discrete type, the composite fuction is
also discrete. When both functions are of the continuous type and at
least one of the frequency functions is bounded for all x and may
be expressed as a Riemann integral

-fa

/w= /i (x-z)/2 iz)dz= h (x-z)fi, {z)dz

(X
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the compound distribution belongs to the continuous type and the
compound frequency function is continuous everywhere. Depending
on the basic distributions such compound distributions will take
ditterent forms. The mean for such distributions is +nu and
variance o = cj . For higher moments about the mean ageneral
expression is ;

It easily follows from the above that a compound distribution of two
normal variables will itself be normal. Further, the bionomial distri
bution reproduces itself by the addition of independent variables.

The term rnixturemay also mean a genuine weighted average of
cumulative distribution functions. Let T={F} be a family ofone
dimensional cumulative distribution functions and let m=|ji be a class
ofmeasures defined on (a) a Borel field ofsubsets ofF, with n (F) = 1
for all [xem. Then is defined in the usual manner for
measurable mappings g of T into the realline

g=gx(F) =^F(x) this becomes

H ~ H(x) =• F{x)d]^{F)

T
.. (2)

The resultant distribution function H is called a mixture or more
specifically (A=mixture of T, provided the mixing measure (x does not
assign measure one to a particular member of T. For a stipulated T,
the lamily H=H{T) of mixtures H, swept out as varies over m, will
be called the class of m mixtures of T or simply the class mixtures of
T. In particular the family T may be indexed by a finite number of
parameters a^, each a/ varying over the real line

T={F{x, aj, a^,...am)}.

("'•u denotes the class of m-dimensional c.d. f.s
andF(x; a^, ag.-.am) be measurable on (m-hl) dimensional Euclidean
space , then, m may be taken to be the class of measures

on J?" induced by G^G and (2j becomes :

H(x) = F(x; aj, a.^...am) d G a^...oim).
Rn

m

If G(aj, ag, ...a/M)= j | Gi (a<) the mixture is termed aproduct
/=!

measure mixture. We can speak of a discrete orabsolutely continuous
mixture according as G{0.^,0.2...am) (or (i) is a discrete or absolutely
continuous c.d.f. (measure).

We detail below the results pertaining to mixtures of specific
distributions. Contageous distributions are mixtures of distributions.
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The compound Pojsson distributions are precisely mixtures of Poisson
distributions which are necessarily discrete distributions with jumps
at the non-negative integers. In the course of determining limit
distributions of sums of interchangeable random variables mixtures
of normal distributions are encountered. In certain situations one is
interested in the distribution of a random variable X, but knows^ only
the conditional distributions of X given the values of some auxiliary
random variable Y. Then the desired distribution of Z is a mixture
of the known conditional distributions. A family F=F(x, a)=F(x, «i,
a2>"-«ni) where varies ever an additive abelian group i)/gO'=l, 2,
.. m) is called additively closed, if for every admissible a, p,

(F(x; p)=F(x,«+p)

where * as usual denotes the convolution operation. The families
of Normal, Poisson, Binomial and many other distributions are
encompassed within this definition. Teicher (1960) obtained the
following general results for mixtures of distributions (1) An infinitely
divisible mixing (G) of an additively closed family (T) yields an
infinitely divisible mixture (H). (2) The convolution of two Com
pound Poisson distributionsisagain a CompoundPoissondistribution
whose mixing c.d.f. is the convolution of two mixing c.d.f.'s (3) The
convolution of two mixtures of symmetric stable distributions of
fixed exponent 3 is again a mixture of the same type with mixing
c.d.f. the convolution of the given mixing c.d.f.'s (4) No mixture
of symmetric stable distributions with fixed exponent ^, (0<13<2)
is a symmetric stable distribution with exponent (3.

Sometimes the underlying distribution of interest to the
statistician will be generated by selecting one of a collection, of
alternative normal distributions according to some scheme. If the
resulting mixture of normal distributions is itself normal regular
analysis of variance can be performed. Considering mixtures of the
two parameter family of normal distributions with parameters 9 and

the following results emerge.

. 1. Suppose the conditional distribution | cr2>d(,2}=0.
Then a efficient but unnecessary condition that a. (x-mixture of
normal distributions be normal with mean 9^ and variance is that
the conditional distributions of 9 given is normal with mean 9^ and
variance for all values of for which it is defined.

2. Further in order that a [x-mixture of normal distributions be
normal with mean 0^=0 and variance (To^=1, it is necessary that:

(0 (AK/a2>l}=0=(i,{e, crV(j= = l, 0560}.
supposed that |x{a2/a2> 1}=0.

(i:) (X
I

m) j

9.

exp

>c

27T3^)5

Hence it may be

>0, all OO.
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(iv) !X{0/ 1e I <e-^}: log, 1M>0.

(v) the 0-spectrum of [j. be not confined to a subset of members
in arithmetic progression ; further, for all integers m (all real b) and
all integers 1,

H-

«—1 r

elT I ,0
" • /=l

•87tl
8/17=0 L

87 + 3

8n
<1,

where r significes the fractional part of r and either r=-d—mln or
r= t

3. A product-measure mixture of normal distributions is
normal with mean 0o and variance ctq^ if and only if for some in
(0, <-). and G.ia'') is degenerate at <7^2.
From this it follows that a mixture of normal distributions with
identical means cannot be normal. It is intuitively plausible that no
countable mixture of normal distributions is normal and if the
variances a/ have a minimum this is indeed the case. Moreover, it
can talso be shown that a countable mixture of normal c.d.f.'s cannot
be normal if the means are a set of numbers in arithmetic progression;
but a countable . mixture of normal distributions can be arbitrarily
close to a normal distribution. The relationship:

00

l^e-x^l4a
2\/ KO.

reveals that an exponential mixture of normal distributions is a
Lapalce distribution.

Some other results are as follows. • The Gamma distribution is
a negative binomial mixture of commonly scaled but differently
exponented Gamma c.d.f.'s A mixture of Poisson distributions is
linked with the moment problem. Under certain conditions the
mixture follows the compound Poisson distribution.

3. Some new results

When data from a design is divided group-wise into different
blocks or in a haphazard manner, where the group formations would
be automatic or otherwise, the distribution followed by each may be
specified and tested. If the specifications are of the standard types,
appropriate transformations can be employed to render the distribu
tions normal. The normal variates in each portion can be reduced to
the standard normal form. Then the composite data can be analysed
in the usual manner using analysis of variance and suitable inferences
drawn. This follows from •the fact that the joint distribution is
standard normal in the whole range for if there be K groups each
with density

p{x)dx=
V2n

^dx
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the density in the composite group would be :

_ —

p'ix)dx=-^ . e dx
k V 2tc •

e 21 2
V 2tc

The result is true for composite mixtures of the type discussed here.
If the distributions are normal in the different groups, the densities
would fake the form :

p{x)dx'='—(;=1, 2, ...k)
CTiV27C

and the density for the composite group would be :

k.

p\x)dx=-\- y
k ^ OiV 1-K

i==\

Thus the pooling at any particular variate value x=Xi will not
generate a normal distribution ; but if the pooling is about

_x—Hft

CTj C>2 <^le

the distribution would be normal. If all the means are equal

k

p'ix)dx=-^ V —
k ^ GiVln

<•=1

and if all the variances are equal

/=!

These are all non-normal and hence direct transformations for
mixtures of this type are diiBcult to obtain.

When the mixtures occur due to -combination of different
variables into a single observation we get the following ;

1. If the individual distributions are Binomials with means
npi and npz and variances «/7i(l—Pi) and np2{l—p2), the mixture in
the additive sense is a Binomial with mean n{px+pi)=m and variance



24 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

=c^+m—— where c^=2«;JiP2. The transformation in this case is

given by

g(»0=
cdm

\/n cdm

VT+"''-

--^/n c sin-1

" I 1

Thus the angular transformation is useful for the compound Binomial
distribution as well.

2. The Laplace distribution is given by :

X^)=ie"~ 1̂ 1(-a<^< R)
The mean of the distribution is 0 and the variance is 2. Since there
is no functional relationship between the mean and variance, trans
formation by the approximate function above is not possible.

3. For the neg^ive Binomial distribution

Eia^ —N • p!

is expressed in terms of parameters p and Ic. Here the mean is x=pk
and variance s^=p{p-\-\)k. Thus Hence square root
transformation can be an approximation for this distribution. We

2

can as well put (i2=[J-i'+ which leads to Beall's transformation;
Ic

sinh"^ {qx)^ .

4. A random variable ^ will be said to have a rectangular

distribution, if the frequency function is a constant equal to in a

certain finite interval {a-h,a-^h) and'o'outside this interval. If

the distribution ranges from a to b, the mean is

a+b , 2 {b-af ,m= —^ and a^=—j^=/cm.
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If data follows this type of distribution, the transformation for
analysis of variance works out to be :

g{m)= ^m.

V'7
5. In Branching Processes there is the compound Poisson

distribution. The generating function of the sum 5'yv =X^-{-X^ +...
+Xjsfisthe compound function g(fis)) where fis)=Ifis\ Two
special cases are of interest, (a) If the XiS are Bernoulli variables with
P[Xi=\}^P and P{xi=^Q>)^q, then f{s)=q-\.ps. (b) If N has a
Poisson distribution with mean d, then :

The distribution with this generating function is called the
compound Poisson distribution. If the X^s are Bernoulli variables
and i*/has a Poisson distribution, then= the sum
has a Poisson distribution with mean tp. Thus m=tp=s'\ Hence

f{m)=
cdm I

= cm

V m

Hence in cases where the distribution of the observations conforms
to the compound Poisson type, square root transformation will bring
the data to the normal form approximately.

6. .Some data from Entonological, Micological and Microbio
logical experiments will follow different types of contageous
distributions. This may be so in different sub-divisions of the experi
ment, where the subdivision would be according to time, block etc.
Transformations are required for such data in order to make analysis
of variance valid. Contageous distributions are also mixtures of
distribtions. The generating function of the contageous distri
bution is:

yi )
•{! L (i +n) 1 J4'(z)=e-™ie

^sstO

Putting 71 = 0,1, 2, successively we get the generating functions for
types A, B and C respectively. They are :

—1] for type A.

1—mg(z—l)]/wj(z—1)

for type B and

^^3(2) -1 l)]/w/(z—1)^
for type C.
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For the general characteristic function the moments are
obtained as ;

+l n+2 ) •

From these

„'j- 2(«fl) ,2 (3)

Moreover,

(i,2-[Ai'=2m2[ii7(/i + 2),

so that the second moment (j.2> will always the greater than under
our condition that and /M2 are positive. We have the further
result that:

m^m2 {, . 6m2 6^2^
n+ir n+2'^(«+2)(«i-3)

so that, since oji>0, [i3>(X2. Further

m2=(n+2)(tx2-(xi^)/2(xi^

mi=(n+l)[Ai7/n2

and again « which gives the type of the distribution is seen to be

Relation (3) shows that Beall's transformation
x^ = q~^ sinh"^ (qx)^

, 2(«+l)

can be used under the assumption that the variance law

holds approximately. This assumes that the distributions are uni-
parametric. But we also find the following results :

(a) For type A distribution
|Z2-(Jii'=27n,[Xi72 m2>0

Thus and hence square root transformation can be used as
an approximation.

{b) Type B

[i.2-(Xi'=2W2[ii73



TRANSFORMATIONS FOR MIXTURES OF DISTRIBUTIONS 27

Here also square root transformation can be used as an
approximation. The exact transformation is ;

(c) Type C

[^2-(Ai'=2w2[ji.i74 whence

tl2=(Al (. ).
Hence here also square root transformation is feasible under

the assumption that the distribution is uniparametric.

Again for type A distribution ;

where A=-~r.
V mi

Thus type Aobeys the second variance law if we assume that '}—
V my

=a constant. This gives the transformation

A-i sinh"^ [A V x] or X-^ log {\/1 + A®a:4-A\/ x }.

We further find that 5x3=n/ {1—which gives the skewness
of Type A distribution in terms of the mean and the parameter /jja,
Further,

jX3>(ji2 and it is positive and

[i,3-(A2=[Xl'm2(2+m2).

Transformations can also be based on this property which is left out
as futher problem for investigation. It may be noted that a trans
formation designed to make the third moment zero will normalise
the distribution.

7. When the different types of mixtures of normal distribu
tions approach the normal form exactly or approximately, no
transformation of data follwing such distributions are necessary to
render analysis of variance valid. But in cases of non-normality
appropriate transformations are to be used. As a pre-requisite the
exact forms of the mixtures are to be first evaluated.

For the Gamma distribution given by :

<^W=-
V L

E{x)=L ; 0^2=L.
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Hence square root transformation is valid. For the p distri
bution of the first kind given by the density

T-/ \ L ,2 Lm
E{x)'=t~. and CT =;^—;—v?/r , r-pc-L+m X {L-\-m)\L + m+l)

Thus (A'a—

If we assume that L is a constant [Xg oc and hence as a first
approximation we can use logarithmic transformation for such cases.
Ad Example

The method suggested above has been applied to the data of
an experiment conducted at the Indian Agricultural Research Insti
tute, New Delhi on two different varieties of Jowar viz : Co-1 and
I.S.-84, in order to Study the effect of 15 insecticides on the control
of Sorghum Shoot fly. The treatments are given in Appendix 1.
The design used was R.B.D. with four replications for each variety.
Appendix II gives the total plant counts per plot and Appendix III,
the counts of dead hearts. Appendix IV gives the percentage of dead
hearts. From this, frequency distributions for percentage dead
hearts are formed for each variety and graphs drawn. From the
graphs (Appendix VI) and by appropriate testing for specifications
it is seen that the distributions under each variety belong to two
negative binomial populations with means 9'82 and 17'23 and
variances IIV'OO and 230"39 respectively. Although the distributions
in the two parts are of the same form, it is a case of two different
negative binomials and is hence a mixture. The mixture of the two
negative binomials is non-normal and so we proceed on the following
lines for the analysis.

By using the transformation log Vl + A^x+Ax the two
distributions have been transformed to bring them to normality by
calculating the value of Afrom the relation.

Ox^=m+ 'h^m^. Appendix VII shows the transformed data. The
transformed data have been standardised and analysed. The results
are shown below :
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Analysis of Variance Table

29

Source d.f. S.S. M.S. F

Between replications within groups 6 1-4802 0-2467 0-647

Between varieties 1 0-0000 0-0000 —

Between treatments 14 79-3615 5-6686 14-87

Varieties x treatments 14 5-2565 0-3754 0-984

Error 84 32-0260 0-3812 —

Total 119 118-1242 — -

Conclusion : Fhe treatments differ sienificantlv.

Table of.treatment means in descending order of magnitude is
shown below along with the critical difference.

^15 Tii
—1-207 —ri94 -1-156

7i2 Ts Ti
0-941 0'915 0-896

C.Z).=0-617
0-788

^9 3^8 ^7
-0-931 —0-837 —0-145

Ts
0-755 0-376

r,3
0-358

Te
0-221

Conclusions

0-208

From the above practical example it can be concluded that in
situations where the data belpng to different distributions the
methods described in this paper can be applied for analysing the
data. Thus if the first group had followed contageous distribution
and the second binomial distribution, the corresponding transforma
tions could have been used and the data standardised as a prelude to
analysis of variance. When the data follow composite mixtures of
distributions the appropriate transformations suggested for such
cases can be utilised. The Laplace distribution is not amenable to any
transformation. For contageous distributions square-root transforma
tions are adequate. For the a-function square-root transformation
and for the p-function logarithmic transformation can be used. The
angular transformation is useful for the compound binomial distri
bution. Square-root transformation is valid also for compound
Poisson distributions.

Abstract

Frequently, data collected from Entomological and Mycological
experiments will often conform to dififerent types of distributions in
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different sub-divisions of the design. In certain other situations the
distributions for whole or part of the design will be mixtures of
component distributions. The paper treats some of the types of
transformations which can be used in such situations. A numerical
application is also given.
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Appendix I

The following are the particulars of the experiment considered -

Design —R.B.D.

Number of Treatment —15

Varieties —(2)C.O. I and IS-84

Treatments

(1) Themet Grannels

(2) Control

(3) Menazon

(4) Menazon

(5) Menazon

(6) Themet L.C. 80

(7) Themet L.C. 80 ,

(8) Solberox Gr. 5%

(9) Solberox.Gr. 5%,

(10) Telodrin,20%

(11) Telodrin 20%

(12) Dieldrin20%

(13) Aldrin40%

(14) 47470 25%

(15) 47470 25%

0-5 gms/furrow.

fungicide alone

0'25 gms/100 gms of seeds

1-50 gms/lOO gms of seeds

1'OO gms/lOO gms of seeds

3-00 gms/100 gms of seeds

6:00 gms/100 gms of seeds

0-75 gms/furrow

1-50 gms/furrow

10:00 gms/lOO gms of seeds

15-00 gms/100 gms of seeds

8'00 gms/100 gms of seeds

8-00 gms/lOO gms of seeds

2 kgs/hectare

4 kgs/hectare
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Appendix IV

Percentage of total dead hearts caused by A Indie'a observations in each
replication of the two soragham varieties

CO-1 IS-84

' Treatment
Number Ri Rz Ri Ri Ri Rs Ri

1. O'OO 0.00 0 00 0 00 0-00 0 00 000 5-88

2. 21-15 17-24 12-00 19-44 40-67 22-47 32-89 9-52

3. 28-57 20-83 8-33 20-75 29-41 . 39-68 . 31-08 33-33

4. 27 27 23-91 22-50 26-66 81-56 28-57 , 13-88 31-58

5. 28-07 12-19 1600 28-88 32-72 26-31 8-93 18-18

6. 20 00 33-33 0-00 0-00 40-00 19-23 . 4-25 16-21

7. 0-00 16-66 0-00 0-00 8-00 27-50 , 5-55 16-66

8. 0-00 0-00 0-00 5-00 0-00 2-74 , 7-41 0-00

9. 0-00 0 00 O'OO 3-33 0-00 1-41 4-50 000

10. 2-94 31-70 7-35 ,8-57 23-07 . 34-72 20-63 000

11. 29-54 22-64 10-77 11-29 40-00 47-30 . 47-06 31-74

12. O'OO 0 00 9-09 13-33 46-66 37 50 - 8-33 12-90

13. 9-25 0-00 16-66 417 16-92 23-33 25-80 10-71

14. 0-00 0-00 0-00 0-00 000 1-30 0-00 . 1-39

15. 0-00 0-00 Q-00 000 0 00 000 4-76 0 00
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Appendix V

Frequency distribution of the percentage data

Variety I {Co I) Variety 11 [IS-84)

Class limits

%
Frequency Class limits

%
Frequency

0-5 30 1 0-5 20

5-15 5 5-10 7

10-16 5 10-15 3

15-20 6 15-20 5

20-25 6 20-25 4

25-30 6 25-30 5

30-35 2 30-35 7

35-40 4

60 40-45 2

45-50 3

60
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Appendix VI
Frequency Polygons for the Variety CO-I
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Appendix VII

Table showing the transformed variates

Mean for first variety=l'055

Mean for the second variety=0-847

Treatment
Number

CO-l IS-84

Ri Ri R3T n. Ri R, Rz Ri

1. 0-000 0-003 0 000 0 000 0.000 0 000 0 000 1-732

2. 2.162 2068 1-902 2-123 2-819 2-478 2 697 1994

3. 2-303 2-155 1-736 2-155 2-632 . 2-805 2-664 2-703

4. 2'282 2-220 2-192 2-273 2-830 2-616 2-204 2-673

5. 2296 1'909 2-033 2-307 2-694 3-568 1-957 2-356

6. 2-137 2-374 0000 0 000 2-809 2-388 1-563 2-291

7. 0 000 2052 0-000 0-000 1-897 2-593 1-702 2-307

8. 0000 0000 0 000 1-508 0-000 1-345 1-856 0-000

9. 0000 0 000 0000 1-335 0-000 1-045 1-531 0 000

10. 1-283 2-351 1-679 1-748 2-492 2-809 2 464 0 000

11. 2-319 2-194 1-851 1-874 2-809 2-908 2-904 2-676

12. 0000 0 000 1-775 1-950 2-899 2-773 1-921 2-162

13, 1-782 0000 5-052 1-430 2-317 2-499 2-556 2-059

14. 0 000 0-000 6000. 0-000 0000 1-011 0.000 1038

15. 0-000 0 000 0 000 0 000 0-000 0 000 1-621 0-000


