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1. INTRODUCTION

In setting up an analysis of variance we recognise three types of
effects, (a) treatment effects, (b) environmental or block effects and
(¢) experimental error. The assumptions made in setting up the
analysis of variance for the above three effects are (1) the treatment
effects -and environmental effects must be additive, (2) experimental
errors must be independent of the other two, (3) the experimental
errors must have a common variance (4) the experimental errors
should be normally distributed. If any one of these assumptions is
not satisfied suitable transformations are to be made to ‘change the
scale of measurements in order to make the analysis of variance valid.
In most cases when the experimental errors do not'have a homogene-
ous common variance, tranformation is applied to make it homo-
scedastic.

. f

If the form of change in variance with mean level is known, the
type of transformation to be used can be determined. Suppose we
write o,’=f(m) where o,* is the variance on the original scale of
measurements X with the mean of X equal to m ; then for any
function g(x) we have '

d 2
o= (72) fm)
so that 4,2 is cbnsta_nt say, ¢® and we have

cdm

2(m)= j W— we(1)

This is an approximate formula which determines the type of
transformation to be used for a particular type of data to make the
analysis of variance valid. For the ideal transformation (a) the
variance of the transformed variable should be unaffected by changes
in the mean level, (b) the transformed variable should be normally
distributed (c) the transformed scale should be one for which an
arithmetic average is an efficient estimate of the mean level for any
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particular group of measurements, (d) the transformed scale should }
be one for which real effects are linear and additive. Under these
conditions Bartlett (1947) suggested :.

(1) the square root transformation when data folldws the
Poison distribution ;

(2) logarithmic transformation of the simplest type when the |
mean level varies with the standard deviation. In such |
cases the variance is greater than the mean. This happens
because the mean level itself fluctuates so that

Ga;2=.m -{—7\20',,,2
=m +Nm?
for biological populations.

| mation, a more exact transformation being
A1 sinh-1 [Avx] or Allog {V I+Ax+ry/ X

This transformation holds for data following negative binomial
distribution as well. For small x it becomes equivalent to +/x
transformation, and for small number the transformation
X~ sinh™ [V x +4]is better. For large M/x it becomes equivalent
to the log transformation. This transformation requires an approxi-
mate knowledge of .. Whenever A cannot be obtained (1+x) can be
used as an approximate transformation. It shows an approximate
linear relationship with sinh~{Av/x+%] for the likely values of A |
which appear in practice. ‘“Beall”, however, suggested that in |
entomological field experiments where an estimate of A is required “
two plots of each treatments must be included in each randomised
block. For such designs we can use the scale A~* sinh™[A/x]. The
transformation is valid for the more general variance law
o2 =p(m+A%m?). When the distribution is log normal the change
in the population variance is often proportional to the mean implying
changes independent of the mean on logarithmic scale. In such

| For Jarge A or m this variance law implies logarithmic transfor- |
\
l
|
|

cases transformations to the scale log(l_x—x) is useful. Correla-
}—i:%. When the data follows the

Binomial law, the angular transformation g(x)==sin-'4/x is used.
The probit transformation is used for log-normal distributions. The

tions are transformed to % log

~

transformation is given by y=5+§ (x—;x)— g . Tt converts the pro- |

bability P in a normal distribution with mean 5 and variance 1 to
the corresponding abscissa y. It is particularly useful when such a
transformed quantity y is linearly dependent on another variable, : |
x so that the transformation converts the functional relation between : |
y-and P to a straight line. :
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2. THE PROBLEM AND SOME RESULTS IN MIXTURES

One of the major problems attempted in the present paper isto
find a suitable method of analysis when the data from-a design
follows different types of distributions in different ranges. The
splitting in the practical situations would be automatic, as _replicates,
times etc. The distributions in such cases would be (a) Poisson (b)
negative binomial, (c) log-normal, (d) contageous. Examples of such
distributions are (1) numbers of field plots with 0, 1,2, ...]arva e
(2) number of plates with 0, 1, 2 ... bacterial colonies etc. - In such
- cases the distributions followed in each portion can be empirically
checked by the chisquare test. For the same portion of the data
different types of distributions can be checked up. The one giving
the highest probability for x* can be selected as adequate. Further,
the forms of the distribution in different portions may be .the same ;
but they may vary in the parameters concerned. In such cases also
different transformations can be used in. different portions of the
design. Another way is to use different transformations which a
priori seem to be appropriate for the data and later on check the
transformed data for near normality or for rapid convergence to
normality. If the data are near normal these specifications are good
enough. If they are riot normal we have to try other specifications.
Some times it may happen that the distributions of the whole or part
are the resultant of mixtures of distributions’in the probability sense. -
In such cases the mixtures can be due to addition or multiplication
of the component variables. In some other situations mixtures can
be due to a weighted average of the cumulative distribution functions.
They may even be the p-mixtures of the cumulative distibution
functions of Teicher. Some of these mixtures will asymptotically
converge to standard distributions as (I) the negative binomial (2)
the log-normal (3) the contageous types. The transformations to' be
used in such and other cases to render analysis of variance valid are
investigated in this paper. . : :

With this object in view we review some of the results from the
theory of mixtures of distributions. The simplest mixture occurs
when each observation is the sum or product of two' component
variables U; and V;. The distribution function-F (x) of the sum of
two independent variables is given by

F(x)=F,(x)*Fy(x)-

This symbolic representation of the distribution functions corres-
ponds to a genuine multiplication of characteristic functions. If both
the components belong to the discrete type, the composite fuction is
also discrete. When both functions are of the continuous type and at
least one of the frequency functions F, is bounded for all x and may
be expressed as a Riemann integral -~ = . - : :

+a : +a .
r@= [ £ 6=25 @=[ £ =21, @

—0
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the compound distribution belongs to the continuous type and the
compound frequency function is continuous everywhere. Depending
on the basic distributions such compound distributions will take
different forms. The mean for such distributions is m;+m, and

variance n*= ¢,*4 6,2, For higher moments about the meana general
expression is :

By =E{(E—m+n—m,) "}

It easily follows from the above that a compound distribution of two
normal variables will itself be normal, Further, the bionomial distri-
bution reproduces itself by the addition of independent variables.

. The term mixture may also mean a genuine weighted average of
cumulative distribution functions. Let T— {F} be a family of one
~ dimensional cumulative distribution functions and let m=u be a class
of measures defined on (a) a Borel field of subsets of F, with p (F)=1
for all p€m. Then Jg(F)dp(F) is defined in the usual mannper for
measurable mappings g of T into the realline.

If g=g,(F) = F(x) this becomes

H~H(x)= j F(x)du(F) - . )
] ‘

The resultant distribution function H is called a mixture or more
specifically . =mixture of T, provided the mixing measure w does not
assign measure one to a particular member of 7. For a stipulated 7,
the family H= H(T) of mixtures H, swept out as p. varies over m, will
be called the class of m mixtures of T or simply the class mixtures of
T. In particular the family T'may be indexed by a finite number of
parameters «;, o,,...om each «f varying over the real line

T={F(x, o4, a,,...0m)}.

If G={G (s, oty,...em)} denotes the class of m-dimensional c.d. f.s
and F(x; «,, ,...am) be measurable on (m +1) dimensional Euclidean
space R™+%, then, m may be taken to be the class of measures
{#G} on R™ induced by G€G and (2) becomes : '

H(x)=J Fx; oy, ay..0m) d G (2, o,...cm).
Rm

m
If G (g, #y,...0m)= H Gi («;) the mixture is termed a product
i=1

measure mixture. We can speak of a discrete or absolutely continuous
mixture according as G (a,,az...am) (or ) is a discrete or absolutely
continuous c.d.f. (measure).

We detaii below the results pertaining to mixtures of specific
distributions. Contageous distributions are mixtures of distributions.
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The compound Poisson distributions are precisely mixtures of Poisson
distributions which are necessarily discrete distributions with jumps
at the non-negative integers. In the course of determining limit -
distributions of sums of interchangeable random variables mixtures
of normal distributions are encountered. In certain situations one is
interested in the distribution of a random variable X, but knows' only
the conditional distributions of X given the values of some auxiliary
random variable Y. Then the desired distribution of X is a mixture
of the known conditional distributions. A family F=F(x, «)=F(x, o,
. ®y,...ty) Where o; varies over an additive abelian group Djg(j=1, 2,
.. m) is called additively closed, if for every admissible «, B,

- (F(x; )" F(x ; B)=F(x, a+p)

where * as usual denotes the convolution operation. ~ The families
of Normal, Poisson, Binomial and many other distributions are
encompassed within this definition. Teicher (1960) obtained the
following general results for mixtures of distributions (1) An infinitely
divisible mixing (G) of an additively closed family (T) yields an
infinitely divisible mixture (H). (2) The convolution of two Com-
pound Poisson distributions is again a Compound Poisson distribution
whose mixing c.d.f. is the convolution of two mixing c.d.f.’s (3) The
convolution of two mixtures of symmetric stable distributions of
fixed exponent B is again a mixture of thé same type with mixing
c.d.f. the convolution of the given mixing c.d.f.’s (4) No mixture
of symmetric stable distributions with fixed exponent B, 0<8<K2)
is a symmetric stable distribution with exponent B. :

Sometimes -the underlying distribution of interest to the
statistician will be generated by selecting one of a collection. of
alternative normal distributions according to some scheme. If the -
resulting mixture of normal distributions is itself- normal fegular
analysis of variance can be performed. Considering mixtures of the
two parameter family of normal distributions with parameters § and
c® the following results emerge. o

. 1. Suppose the conditiopal distribution p{e® | 6>>6,2}=0.

Then a sufficient but unnecessary condition that a. p-mixture of

- normal distributions be normal with mean 6, and variance 0,2 is that

the conditional distributions of 8 given ¢ is normal with mean 6, and
variance o,*— o® for all values of 6* for which it is defined.

2. Further in order that a y-mixture of normal distributions be
normal with mean 6,=0 and variance c,®=1, it is necessary that :-

(@) p{c*/o®*>1}=0=p{9, o*/oc*=1, §5£0}, Hence it may be
supposed-that p{c?/e?>1}=0. '

oree

icz>c g . { 6, 02/1%2< —c }>O, all ¢>0.

6° o S
(i) ] exp {m} dyu=oc, : )
R2 : ' .
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@) wl0] | 0] <e™H 1 pff, 0%6°< " log, 1/6%}>0.

. (v) the f-spectrum of u be not confined to a subset of members-
in arithmetic progression ; further, for all integers m (all real ) and
all integers n > 1,

n—1 . .
- 8]‘*‘_1 8j+3
s { 61 JiZo 8n 8n §<1’

where r significes the fractional part of r and either r=0—min or
r=>56. \

3. A product-measure mixture of normal distributions is
normal with mean 6, and variance ¢,? if and only if for some ¢ in
(0, 6%, Go2(6)=4(8; b0, 6,2 —0,%) and G,(c?) is degenerate at o,%
From this it follows that a mixture ~of normal distributions with
identical means cannot be normal. It is intuitively plausible that no
countable mixture of normal distributions is normal and if the
variances o,2 have a minimum this is indeed the case. Moreover, it
can {also be shown that a countable mixture of normal c.d.f.’s cannot
be normal if the means are a set of numbers in arithmetic progression;
but a countable mixture of normal distributions can be arbutrarily
close to a normal distribution. The relationship:

oC

. 1 i—,x2/4ot. —o g, 1 ,— | X]
J[Z\/Re ]e do _%‘;e

reveals that an exponential mixture of normal distributions is a
Lapalce distribution.

Some other results are as follows. . The Gamma distribution is
a negative binomial mixture of commonly scaled but differently
exponented Gamma c.d.f’s A mixture of Poisson distributions is
linked with the moment problem. Under certain conditions the
mixture follows the compound Poisson distribution.

3. SOME NEW RESULTS

When data from a design is divided group-wise into different
blocks or in'a haphazard manner, where the group formations would
be automatic or otherwise, the distribution followed by each may be
specified and tested. If the specifications are of the standard types,
appropriate transformations can be employed to render the distribu-
tions normal. The normal variates in each portion can be reduced to
the standard normal form: - Then the composite data can be analysed
in the usual manner using analysis of variance and suitable inferences
drawn. This follows from.the fact that the joint distribution is
standard normal in the whole range for if there be K groups each
with density ' o : ,

x2

e %dx

1
p(x)dx_ '\/ZC
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the density in the composite group would be :

, 1 k —5
(xd‘—-‘—— — 2d
p'(x)dx p \/27:6 X
2
1 2
== dx.
\/2'n:e *

The result is true for composite mixtures of the type discussed here.
If the distributions are normal in the different groups, the densities
would fake the form : ' ‘

p(x)dx= \}_ e~ (F—w)?208 gy (i=1, 2, ..k)

oV 2r

and the density for the composite group would be :

k . .

1 1 327952

")y =— __ plx—w)? 2047 g

P'(x) 7 21 YL e X
1=

Thus the pooling at any particular variate value x=x, will not
generate a normal distribution ; but if the pooling is about

X Xy Xt
% Go o

t:

\
the distribution would be normal. If all the means are equal

k
i 1 12/9.2
)= —— __ o~ (x- 1) 202y
p'(x)dx 2 E cﬂ/zne X
. i=1
and if all the variances are equal
k
' 1 —(x wi)%202g
p'(x)dx Y 2 e |

iI=

These are all non-normal and hence direct transformations for
mixtures of this type are difficult to obtain.

When the mixtures occur due to - combination of different
variables into a single observation we get the following :

1. If the individual distributions are Binomials with means
np, and np, and variances np;(1—p,) and npy(1—p,), the mixture 10
the additive sense is a Binomial with mean n(p,-+p,)=m and variance
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m? L .
=cl+m— o where ¢'=2np,p;. The transformation in this case is

given by

g(m)= S cdm _
| V =t
~ n

Vnedm

/\/——+11c — m——)
T
2

=1 csint { =

—’%——i— nct

Thus the angular transformation is useful for the compound Binomial
distribution as well.

2. The Laplace distribution is given by :
p@=te~ ¥l (—a<x<R)

The mean of the distribution is 0 and the variance is 2. Since there
is no functional relationship between the mean and variance, trans-
formation by the approximate function above is not possible.

3. For the negative Binomial distribution
N k+x—1)! j7ad
x! (k=11 (1 +p)e+®

is expressed in terms of parameters p and k. Here the mean is Z=pk
and variance s*=p(p+1)k. Thus s*=c!Z. Hence square root
transformation can be an approx1mat10n for this distribution. We

E(a;)=

can as well put pe=p, -l— 21 which leads to Beall’s transformation:
x'=gt sinh? (gx)t .
4. A random variable £ will be said to have a rectangular
distribution, if the frequency function is a constant equal to —2171 ina
certain finite interval (a—#, a4 /h) and ‘o’ outside this interval. If

the distribution ranges from a to b, the mean'is

_atb . o, (b—a)

= 2 and o~ == 12

-=]cm.
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If data follows this type of distribution, the transformation for
analysis of variance works out to be : :

C -—_—
g(’ﬁ)— v; Vm.
b
5. In Branching Processes there is the compound Poisson
distribution. The generating function of the sum Sy =X;+X; + ...

+X n is the compound function g(f(s)) where f(s)=3fis’. Two
special cases are of interest. (a) If the X;s are Bernoulli variables with
P{Xi=1}=P and P{xi=0}=g, then f(s)=g-+ps. (b) If N has a
Poisson distribution with mean g, then : h(s)=e—*+¥()

The distribution with this generating function is called the
compound Poisson distribution. If the X;’s are Bernoulli variables
and N has a Poisson distribution, then h(s)=e-*?+7s, the sum Sy

has a Poisson distribution with mean tp. Thus m=tp=s> Hence

, cdm 3
(m)= — =C(In
fim) S v m
Hence in cases where the distribution of the observations conforms
to the compound Poisson type, square root transformation will bring
the data to the normal form approximately.

6. .Some data from Entonological, Micological and Microbio-
logical experiments will follow different types of contageous
distributions. This may be so in different sub-divisions of the experi-
ment, where the subdivision would be according to time, block etc.
Transformations are required for such data in order to make analysis
of variance ‘'valid. Contageous distributions are also mixtures of
distribtions. The generating function of the contageous distri-
bution is: :

my’(z—1)° }
¢(z)=e‘m1e{’"1" ! 2 (stn)!

Putting n=0, 1, 2, successively we get the generating functions for
types 4, B and C respectively. They are :

d,(2)=e"e™ [e™,* 1 —1] for type A.

$y(2)=e"me™[e™, "V — 1 —my(z—1)][my(z—1)

for type B and
P(2) =e ™ e2m [, 51 — 1 —my(z —1)]Imy*(z—1)

for type C.
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_For the general characteristic function the moments are
obtained as :

pt=mn/(n+ 1)
mgmy £, 2my N
B = k1 KH- n-t2 )
" From these
2(” *- 1) 2 (3)

it
Moreover,
E"z“l’“l'=2mzl’~1’/(’1+2);

so {hat the second moment ., will always the greater than ;' under
our condition that n and ms are positive. We have the further
result that :

_ mymy 6m, 651152
va= 711 {H a2 T Grn ) ;

“so that, since  m;> 0, py>p,. Further -
'"2=(’1+2)(P~2_(~’-11)/2¥L11
my=(n+1u,[m,
and again n which gives the type of the distribution is seen to be
= 6(pe’+ l‘-llllz—"’hlun'—m'z) .
a2+ 20, ps —3p,”

n

Relation (3) shows that Beall’s transformation
x'=¢¥ sinh™! (qx)’%
2(n+1)
where q nt2m, ‘ |
can be used under the assumption that the variance law
ox*=m{ hm?

holds approximately. This assumes that the distributions are uni-
parametric. But we also find the following results :

(@) For type A distribution
o=ty =2myp, (2 < my>0 p, >0.
Thus p,ocp,” and hence square root transformation can be used as
an approximation.

(b) Type B

e —p =2map )3
pa=,'(1 -} 4m,).
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Here ‘also square root transformation -can be used as an
approximation. The exact transformation is ;

g(x)= —-;_?::4 x1’2.

(¢c) Type C
pe —w, =2myp’ /4 whence

e (14%).

Hence here also square root transformation is feasible under
the assumption that the distribution is uniparametric.

Again for type A distribution :

' =mmymy ;5 py=n1my(1+ my,)

=y, +MN,"? where A= L )
) » v m,

Thus type A obeys the second variance law if we assume that 1

v my

o

=a constant. This gives the transformation

A-1sinh=* [Av/ x ] or A log {vVIFRx+AV x )

We further find that pa=p," {1—3m,+m,?} which gives the skewness

of Type A distribution in terms of the mean and the parameter m,,
Further,

TP and it is positive and
s to =ty My(2+m,).

Transformations can also be based on this property which is left out
as futher problem for investigation. It may be noted that a trans-
formation designed to make the third moment zero will normalise
the distribution,

7. When the different types of mixtures of normal distribu-
‘tions approach the normal form exactly or approximately, no

" transformation of data follwing such distributions are necessary to

render analysis of variance valid. But in cases of non-normality
appropriate transformations are to be used. As a pre-requisite the
exact forms of the mixtures are to be first evaluated.

8. For the Gamma distribution given by :
—x ¢L—1

e
==

E(x)=L ; o,2=L.
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Hence square root transformation is valid. For the B distri- .
bution of the first kind given by the density |

xL-—- l(l_x)m—l

Y= "5, m)
! L 2 Lm
EW)=gry ad o =m s rmD
Thus Py 1

2
/. LN
L (1 +uT’)

If we assume that L is a constant p, oc u,’> and hence as a first
approximation we can use logarithmic transformation for such cases.
An Example

The method suggested above has been applied to the data of
an experiment conducted at the Indian Agricultural Research Insti-
tute, New Delhi on two different varieties of Jowar viz : Co-1 and
1.S.-84, in order to Study the effect of 15 insecticides on the control
of Sorghum Shoot fly. The treatments are given in Appendix I.
The design used was R.B.D. with four replications for each variety. |
Appendix II gives the total plant counts per plot and Appendix III, ;
the counts of dead hearts, Appendix IV gives the percentage of dead ;
hearts. From this, frequency distributions for percentage dead 1
hearts are formed for each variety and graphs drawn. From the
graphs (Appendix VI) and by appropriate testing for specifications
it is seen that the distributions under each variety belong to two
negative binomial populations with means 9'82 and 1723 and
variances 117-00 and 23039 respectively. Although the distributions _
in the two parts are of the same form. it is a chse of two different .
negative binomials and is hence a mixture. The mixture of the two
negative binomials is non-normal and so we proceed on the following
lines for the analysis. .

By using the transformation A-* log 4/ 1+A%x4+2Ax the two
distributions have been transformed to bring them to normality by
calculating the value of A from the relation.

ot=m+Nm2 Appendix VII shows the transformed data. The
transformed data have been standardised and analysed. The results
are shown below : :

T P . U P
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Analysis of Variance Table

Source d.f. ‘ S.S. ‘ M.S. ’ F
Between replications within groups 6 1'4802 02467 0647
Between varieties 1 0-0000 00000 —
Between treatments 14 793615  5'6686 14:87
Varieties x treatments 14 52565 03754 0-984
Error 84 320260 03812 —

Total - 119 1181242 — -

Conclusion : Fhe treatments differ significantly.

Table of treatment means in descending order of magnitude is
shown below along with the critical difference.

Ty T Ty T, T, T,
—1207 —1'194 —1'156 —0931 —0'837 —0°145

Ty T, T, Ts Ts Ti, T3 T Ty
0941 0915 089 0788 0755 0376 0358 0221 0208
C.D.=0617

CONCLUSIONS

From the above practical example it can be concluded that in
situations where the data belong to different distributions the
methods described in this paper can be applied for analysing the
data. Thus if the first group had followed contageous distribution
and the second binomial distribution, the corresponding transforma-
tions could have been used and the data standardised as a prelude to
analysis of variance. When the data follow composite mixtures of
distributions the appropriate transformations suggested for such
cases can be utilised. The Laplace distribution is not amenable to any
transformation. For contageous distributions square-root transforma-
tions are adequate. For the o-function square-root transformation
and for the B-function logarithmic transformation can be used. The
angular transformation is useful for the compound binomial distri-

bution. Square-root transformation is valid also for compound
Poisson distributions,

ABSTRACT

Frequently, data collected from Entomological and Mycological
experiments will often conform to different types of 'distributions in
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different sub-divisions of the design. In certain other situations the
distributions for whole or part of the design will be mixtures of
component . distributions. The paper treats some of the types of
transformations which can be used in such situations. A numerical
application is also given. '
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1

Appendix 1

.~ The -followilig are the particulars of the experiment c,onsidere_,d -

Design
Number of Treatment

Varieties

Treatments
(1) Themet Grannels
(2) Control
(3) Menazon
(4) Menazon
(5) Menazon
(6) Themet L.C. 80
(7) Themet L.C. 80 .
(8) Solberox Gr. 5%
(9) Solberox.Gr. 5%,
(10) Telodrin 20%
(11) Telodrin 20%
(12) Dieldrin 20%
(13) Aldrin 409,
(14) 47470 25%
(15) 47470 25%

—R.B.D,
—15
—(2)C.0.Tand IS -84

0-5 gms/furrow.
fungicide alone
025 gms/100 gms of seeds
1-50 gms/100 gms of seeds
1:00 gms/100 gms of seeds
3:00 gms/100 gms of seeds
6:00 gms/100 gms of_.seeds
0-75 gms/furrow
1-50 gms/furrow
10:60 gms/100 gms of seeds
15:00 gms/100 gms of seeds
800 gms/iOO gms of seeds
8:00 gms/100 gms of seeds
2~ kgs/hect’are T
4 kgs/hectare
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Appendix HI

Ho:._.mmm._ hearts in different replicitions of 2 varieties of Jowar
under different treatments

Co—1 IS-84
dﬂw“_ﬂmw d Ry | Ry R; - Ry Ry Ry Ry Ry
L. 0 0 0 0 0 0 0 2
2, 11 19 6 17 24 20 25 4
3. 12 14 6 1§ 20 25 23 20
4. 2 15 g 16 2 2 s 18
5. 16 5 8 23 18 15 5 6
6. 2 5 1 0 8 5 9 6
7. 0 1 0 0 2 11 1 1
8. 0 1 0 2 0 2 4 0
, 9. 0 0 o 0 1 2 0
” 10. 1 13 3 3 7 25 10 0
. 11. 3 1 7 7 28 35 32 20
12. 0 0 1 3 14 6 4 3
13, 5 0 10 2 11 14 16 6
14, 0 0 2 0 0 1 0 1
15. 1 1 0 0 0 0 o 0




34 JOURNAL OF THE.INDIAN.SOCIETY OF AGRICULTURAL STATISTICS

Percentage of total dead hearis caused by A Indiéa observations in each

replication of the two soragham varieties

Appendix IV

co-1 15-84

‘Treamment | p | Ry | Ry | Ry R | R | Ry | R
1. 000 000 000 000 000 000 000 588
2. 2015 1724 1200 1944 4067 2247 3289 952
3. 2857 2083 833 2075 2941 3968 . 3108 3333
4 27271 2391 2250 2666 8IS6 2857 . 1388 3158
5. 2807 1219 1600 2888 3272 2631 893 1818
6. 2000 3333 000 000 4000 1923 . 425 1621
7. 000 1666 000 000 800 2750 555 - 16%66
5. 000 000 000 500 000 274 T4 . 000
9. 000 000 000 333 000 141 450 000
10. 294 3170 735 57 2307 . 472 2063 000
1. 3954 2264 1077 1129 4O 00 4730 . 4706 3174
“i2. 000 000 909 1333 4666 3750 . §33 1290
EER 925 000 1666 417 1692 2333 2580 1071
14, 000 000 000 000 000 130 000, 139
15, 000 000 000 000 000 000 476 000
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Frequency distribution of the percentage data

Appendix V

Variety I (Co I)

Variety II (15-84)

Class limits

Class limits

A Frequency % Frequency
0-5 30 0-5 20
5-15 5 5-10 7

10-16 5 10-15 3

15-20 6 15-20 5

20-25 6 20-25 4

25-30 6 25-30 5

30-35 2 30-35 7

— 35-40 4
60 40-45 2
_— 45-50 . 3

60
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Appendix VI
Frequency Polygons for the Variety CO-I

LA o

401

304

FREQUENCY
N
[

~n
S
+

25 75 12'5 175 225 275 325 375 42'5 475 §2'5 513 625 675
Percentage

Frequency Polygons for Variety TS-84

N
W

FREQUENCY
23
3

e
25 75 125 175 25 215 33 31S 42's 475 828 Sh8 638 618

Perceniage [
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Table showing the transformed variates

Mean for first variety=1-055
Mean for the second variety=0-847

.3

Appendix VII

Treatment col 1584
Number
R, ‘ Ry } Ryr | Ry Ry R, Ry Ry
1. 0000 0000 0000 0000 0.000 0000 0000 1732
2. 2,162 2068 1902 2123 2819 2478 2697 19%
3. 2303 2155 1736 2155 2632. 2805 2664 2703
4. 2282 2220 2192 ' 2273 2:830 2616 2204 2673
5. 2296 1909 2033 2-307 2:694 3568 1957 2'356
6. 21137 2374 0000 0000 2:809 2388 1563 2-291
7. 0000 2052 0000 0000 1-897 2593 1-702 2307
8. 0-000° 0000 0000 1'508 0000 1:345 1856 0000
9. 0000 0000 0000 1:335 0000 1045 1'531 0000
10. 1-283 2351 1679 1748 2:492° 2:809 2464 0000
11. 2:319 2194  1-851 1:874 2809 2908 2904 2676
12, 0:000 0000 1775 1950 2899 2773 1921 2162
1.-3, 1782 0000 5052 1430 2:317 . 2:499 2556 2:059
14, 0000 0000 6000 0000 0000 1011 0000 1038
15. 0000 0000 0000 0000 1'621 o-obo

0-000

0 000




